

World Leaders in Flexible Waveguide Technology

The Company

Flexiguide specialize in the manufacture of flexible and flexible / twistable waveguide and associated waveguide products. Using advanced manufacturing techniques and innovative processes, we can offer rapid delivery and exceptional performance.

State of the art test equipment.

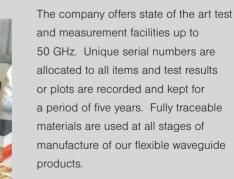
Design and Development

Our flexible / twistable waveguide is manufactured using purpose built, precision winding machines, designed and built in house using innovative new techniques in precision metal manipulation. The unique design of these machines has set new levels of performance for flexible / twistable waveguide without the need to dent tune. Our engineering team are qualified with many years experience

of waveguide and its' applications and can offer custom design

solutions to meet your demanding requirements.

Typical full band performance.



Quality

Flexiguide is dedicated to providing the highest level of quality assurance. We are proud of our high manufacturing yields, excellent record of on-time delivery and product reliability. Rapid response to technical requests and price / delivery enquiries ensure customer satisfaction at all times.

> allocated to all items and test results a period of five years. Fully traceable manufacture of our flexible waveguide products.

In-house production lines.

Our dedication to customer service and value has established our reputation for being the supplier of choice in a global market, not just for the product we supply, but for the service we provide.

Our rapidly growing production facility in the UK supplies many of the Worlds leading OEM's through direct sales and a network of agents.

Applications and Markets

Flexible and flexible / twistable waveguide are used in a wide variety of telecom, satcom, military and aerospace applications. Waveguide carries the high frequency radio (microwave) signals in both communication and radar systems. Due to its' helically wound design, flexible / twistable waveguide can be simultaneously twisted and bent in both planes.

The principle applications are:

- An aid to positioning parabolic reflectors in line of sight microwave radio links.
- The elimination of installation difficulties caused by misalignment or system variations.
- To isolate vibration.
- To permit the relative movement of equipment due to thermal expansion.
 - To accommodate moving equipment in radar scanners.

Waveguide Construction

Flexible / Twistable

Flexible / twistable waveguide core starts life as a spool of 0.1mm thick, silver plated, brass strip. The strip is then precision rolled into a three-dimensional profile before being helically wound around a rotating mandrel to form a continuous rectangular tube with uniform cross section and internal silver plating to minimize loss. Flexible / twistable waveguide is not pressure tight without a jacket.

Flanges

Flexiguide offer a wide variety of flanges including European "154 IEC" standard, American MIL specification "UG" flanges and American EIA "CPR" types. Standard flanges are CNC machined from corrosion resistant, marine grade brass and are supplied un-plated unless otherwise specified. Special flanges can be supplied upon request.

The unique design of the flange rear ensures that the moulded rubber jacket overlaps to create a secure, permanent environmental seal.

Flange Finish Tin

Tin plating improves the compatibility of standard brass flanges with aluminium by reducing differential electrode potentials. It also provides increased resistance to corrosion in hostile environments.

Silver

Silver plating of the flanges provides increased corrosion resistance for hostile environments.

Protective Jacket

Silicone: -70 to 170°C

Our standard flexible waveguide is encapsulated using injection moulded silicone rubber to provide a high degree (IP68) of environmental protection. Silicone is proven to be more resistant to ozone, UV, water and extremes of temperature than the inferior neoprene alternative offered by other waveguide manufacturers.

Polyurethane: -30 to 90°C

Polyurethane offers an excellent alternative to neoprene where the temperature range of silicone is not required.

Polyolefin: -20 to 100°C

For a limited number of applications and for longer lengths we can offer an adhesive lined polyolefin heat-shrink jacket. Due to the nature of the jacket, moulds are not required and lengths up to 5 metre are available depending upon waveguide size. These jackets are not recommended for use in pressurised systems above 40kPa.

Flexible Waveguide

There are two types of flexible waveguide:

Flexible / non-twistable waveguide which is manufactured in a similar way to flexible / twistable waveguide with the addition of a solder wire which is later melted to prevent the waveguide twisting. This also reduces any RF leakage.

Seamless flexible waveguide is manufactured from a thin brass tube, which is mechanically manipulated into a corrugated form to produce a seamless flexible waveguide. The seamless construction generally allows for greater power and pressure handing although length is limited to 1 metre.

ELECTRICAL SPECIFICATIONS													
WG DESIGNATION			FREQUENCY RANGE	PEAK POWER**	SUGGESTED AVERAGE POWER LIMIT**	INSERTION LOSS dB	RETURN LOSS dB*						
WG	WR	R	GHz	MW	kW	dB/m	300mm	600mm	1000mm				
10	284	32	2.60-3.95	2.2	4	0.11	31.4	30.0	29.5				
11A	229	40	3.30-4.90	1.8	4	0.15	31.0	29.5	28.8				
12	187	48	3.95-5.85	1.4	3	0.16	31.0	28.8	28.3				
13	159	58	4.90-7.05	0.6	2.5	0.18	31.0	28.3	27.8				
14	137	70	5.85-8.20	0.56	2	0.28	30.2	27.8	27.3				
15	112	84	7.05-10.00	0.33	1.5	0.30	30.2	27.3	27.1				
16	90	100	8.20-12.40	0.22	1	0.40	30.2 27.1		27.0				
17	75	120	10.00-15.00	0.18	0.75	0.50	29.4	27.0	26.4				
18	62	140	12.40-18.00	0.12	0.4	0.80	29.4	26.4	26.0				
19	51	180	15.00-22.00	0.085	0.2	1.00	26.4	25.0	24.5				
20	42	220	17.70-26.50	0.045	0.1	1.20	23.0	22.1	21.1				
21	34	260	22.00-33.00	0.031	0.085	1.50	22.1	21.0	20.0				
22	28	320	26.50-40.00	0.022	0.075	2.00	21.0	17.7	17.1				
23	22	400	33.00-50.00	N/A	N/A	2.50	20.0	16.5	16.0				
24	19	500	40.00-60.00	N/A	N/A								
25	15	620	50.00-75.00	N/A	N/A								

Notes:

1) *Return Loss performance is degraded if Choke Flanges are specified.

2) **Power figures are for guidance only.

	MECHANICAL SPECIFICATIONS													
	WG		MINIMUN	I CENTRE LINE	MAX TWIST	MAX TWIST								
DESIGNATION			STATIC E-PLANE	STATIC H-PLANE	REPEATED E-PLANE	REPEATED H-PLANE	STATIC	REPEATED						
WG	WR	R	mm	mm	mm	mm	Deg/m	Deg/m						
10	284	32	206	412	824	1648	105	25						
11A	229	40	166	332	654	1328	130	35						
12	187	48	136	272	544	1088	155	40						
13	159	58	116	232	464	928	185	45						
14	137	70	100	200	400	800	210	52						
15	112	84	82	164	328	656	260	68						
16	90	100	66	132	264	528	315	76						
17	75	120	54	108	216	432	365	92						
18	62	140	46	92	184	368	445	112						
19	51	180	38	76	152	304	445	112						
20	42	220	30	60	120	240	630	157						
21	34	260	24	48	96	192	630	157						
22	28	320	20	40	80	160	920	230						
23	22	400	18	38	78	158	920	230						
24	19	500	18	38	78	158	920	230						
25	15	620	16	36	76	156	920	230						

Notes:

1) Standard lengths are as follows: 100, 200, 300, 400, 500, 600, 900, 1000, 1200, 1500, 2000 mm.

2) Other lengths are available on request and may be subject to tooling and design charges.

3) Length tolerance = 1.5% or +/-2mm which ever is the greater.

Considerations for use

Storage

To prevent dirt and moisture ingress waveguide assemblies should be transported and stored in their original packaging until the point of installation. Flexiguide standard packing includes a sealed polythene moisture barrier to protect the contents form humidity and moisture ingress.

Handling

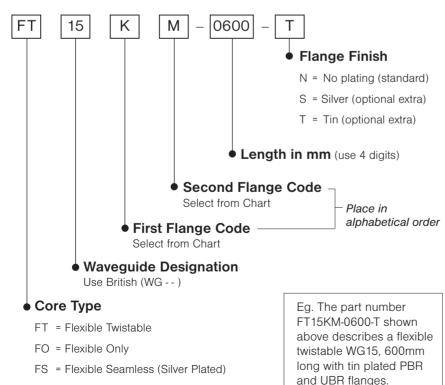
To maximize performance, waveguides are manufactured to high tolerances. Any physical damage or force, which alters the cross sectional profile, will be detrimental to the electrical performance. Waveguide assemblies must not be bent beyond the minimum bend radii as detailed in the mechanical specification table. Waveguide assemblies must not be stretched or installed under tension.

Electrical

Whilst Insertion Loss (attenuation) and Return Loss (VSWR) performance will be maintained during flexing, a flexible waveguide assembly cannot be considered phase stable during flexing due to the changing path length. Full details of the electrical performance can be found in the table on page 5.

Environmental

Humidity


Jacketed waveguide assemblies are not affected by humidity, although condensation may penetrate non-sealed flanges.

Vibration

Waveguide assemblies have a low primary resonant frequency due to their low spring stiffness. Assemblies should therefore be supported at regular intervals to prevent large magnitude oscillations due to variable wind loading. In cold climates, consideration should also be given to potential ice loading and appropriate support provided.

Ordering Information

FN = Flexible Seamless (No Plating)

154 IEC FLANGES Flexiguide flange codes

						154 IEC FLANGES													
			S	QUAR	E	RECTANGULAR							CIRCULAR						
			CBR	PBR	UBR	PDR			UDR			UAR		PAR		CAR			
DESIGNATION		4 HOLE	4 HOLE efts	4 HOLE	6 HOLE	8 HOLE	10 HOLE	6 HOLE	8 HOLE	10 HOLE	6 HOLE	8 HOLE	6 HOLE	8 HOLE	6 HOLE	8 HOLE			
WG	WR	R				į.	Î.							\bigcirc	\bigcirc				
10	284	32						•			0		0		R		W		
11A	229	40						•			C								
12	187	48					G			0			0		R		W		
13	159	58					6			C		0		R		W			
14	137	70					0			0		0		R		W			
15	112	84	G	K	M		0			C									
16	90	100	G	K			•			C									
17	75	120	G	K	M	Ð													
18	62	140	G	K	M	8													
19	51	180	G	K	M	Ð													
20	42	220	G	K	M														
21	34	260	G	K	M														
22	28	320	G	K	M														
23	22	400																	

AMERICAN FLANGES

			AMERICAN FLANGES														
			G-CHO F-392		(UG-COVER (MIL-F-3922/-)				UG-C	OVER SKET		CPR()G		CPR ()F		
			SQ	CIRC	ULAR	SQ	C	RCUL	٩R	SQ	С	IRCUL	AR	RECTANGULAR			
DESIGNATION		4 HOLE	6 HOLE	8 HOLE	4 HOLE	4 HOLE	6 HOLE	8 HOLE	_	4 HOLE	6 HOLE	8 HOLE	8 HOLE	10 HOLE	8 HOLE 	10 HOLE	
WG	WR	R					6					\bigcirc					
10	284	32													С		D
11A	229	40													С		D
12	187	48			A				B				Ŷ	С		D	
13	159	58												C		D	
14	137	70		A				B				Y		С		D	
15	112	84	A			B				Ŷ				C		D	
16	90	100	A			B				Y				C		D	
17	75	120	A			B				Ŷ							
18	62	140	A			B				Y							
19	51	180															
20	42	220	A			B				Y							
21	34	260	A			B				Ŷ							
22	28	320	A			B				Ŷ							
23	22	400					B				Ŷ						

Fixing Kits

Sets of Nuts, Bolts, Washers and O-Rings / Gaskets are available to mate appropriate flanges. Each kit contains the correct hardware to mate correctly one pair of flanges. All fixings are corrosion resistant stainless steel.

Other Products

Rigid Waveguide Bends

Flexiguide offer a range of Rigid E and H plane bends to suit a wide variety of applications. Standard bends are 90 degrees with 30 and 45 degree models available upon request.

Straight Rigid Waveguides

Straight Rigid waveguides are available in sizes from WG10 (R32 / WR284) through to WG23 (R400 / WR22). Lengths from 50 mm to 3000 mm can be supplied to meet you requirements.

Rigid Waveguide Twists

Flexiguide offer a range of 90 degree Rigid waveguide twists to complement the other Rigid waveguide products.


Taper or Stepped Transitions

Taper or Stepped Transitions are available to convert from one waveguide size to another.

Material and Finish for Standard Rigid Waveguides

Bends, Twists, Straights and Taper Transitions can be supplied with any of the standard flanges listed in the Flexiguide Flange Code table and custom flanges are available upon request. Standard Rigid waveguides are manufactured from Brass / Copper and finished in matt black paint.

Please contact Flexiguide or your local Flexiguide Agent for further information.

Flexiguide Limited Unit 9 Rodgers Industrial Estate Yalberton Road Paignton Devon TQ4 7PJ United Kingdom Telephone: +44 (0) 1803 527011 Facsimile: +44 (0) 1803 553527

Email: info@flexiguide.com

Web: www.flexiguide.com

Specifications shown on this document are offered as a guide only. Components may be modified to suit the mechanical or electrical parameters requested, or may be optimised to suit the operating frequency range. Frequency range of operation shall be advised when ordering.

Information provided in this brochure is for reference only. Dimensions or specifications are typical values. All designs, specifications and availabilities of products and services presented in this document may be subject to change without notice. For confirmation of details please consult your agent or manufacturer.